Ultra Low-Power IoT & AI at the Edge Computing Platform

Optimized For

Edge AI/ML, Security, Smart IoT

V3.8
ASA Microsystems Inc.

- Founded early 2018
- Focused on Ultra Low Power High Performance Technology, IP and Products Optimized for \textit{IoT and AI Enabled Edge Computing}
- Based in Silicon Valley with R&D office in Japan
- Multiple Customer Driven Product Developed
- Next generation AI Edge Inferencing products in development
- Experienced Management Team with Proven Track Record
Target Markets

- Medical
- Medical
- Medical
- Medical
- Medical

- Industrial / Robotics

- Building Automation

- Smart Camera / Security

- Smart Appliance

- Smart Sensors

- Smart Drones

- Consumer Products
ASA Value Proposition

Ultra low-power high performance RISC-V based processor and ultra low-power vector-based accelerator to make smart IoT and edge AI computing a cost and time to market practical reality.
ASA RISC-V Processors
Why ASA RISC-V Processors

RISC-V:
- An instruction set – independent of processor architecture and implementation
- Commercial RISC-V processors are proprietary implementations of microarchitecture for the common RISC-V instruction set
- Majority RTL generated from chisel-based implementation of RISC-V processor

ASA RISC-V:
- Proprietary patent pending microarchitecture that implements RISC-V ISA in Verilog
- Ultra-efficient in gate count, die size, and power
- Hyper-scaler clock rate
 - Dynamic range from 100’s of megahertz to gigahertz
ASA RISC-V Based Technology Portfolio

- **ARSIM**: Complete C/C++ based simulator for verification and software development
- **Heterogeneous chiplet based system design IP and platform**
- **Multicore processor core system platform**
- **Lowest power RISC-V vector processor**
- **Complete FPGA development and production platform**

RISC-V

- **Simulator**
 - Chiplet Ready
 - Multi-Core
 - Vector Processor
 - AI Accelerator Ready
 - SoCs

- **Software**
- **Processors**
- **FPGA**
- **Tools**

Industry’s highest performance with lowest power and smallest size RISC-V processors

Tightly coupled custom AI accelerator integration

Fully verified SoC platform for different applications

Standard software platform and tools for different applications
ASA Processor Core Family Overview (32-bit RISC-V)

AR32Z
- Proprietary micro-architecture.
- Core is ready for customer evaluation.
- FPGA development platform ready for prototyping.
- Smallest footprint
- Applications
 - Sensors interface
 - Energy harvesting
 - Battery operated embedded IoT & Medical applications

AR32E
- Proprietary micro-architecture with parallel execution unit
- To deliver highest performance at reasonably lower power consumption.
- Small footprint
- Lowest power with highest performance (GHz+ at 28nm)
- Applications
 - Edge computing
 - MPSoC for AI/ML
 - Accelerator coprocessor

AR128V
- Proprietary micro-architecture with vector execution unit as accelerator
- High Performance vector operation at lowest power.
- Proprietary Memory Controller
- Applications
 - AI
 - Vision Processing
 - Image Processing/DSP

Optional SIMD/MAC/DSP Co-Processor

M0 – M4

M7 and More

128-bit Vector Processor
Implementation Results in FPGA

Table shows hierarchical implementation result for the AR32Z SoC (reported core part only) using ARTIX-7-100T device at 100MHz operating frequency

<table>
<thead>
<tr>
<th>Name</th>
<th>Slice LUTs</th>
<th>Slice Registers</th>
<th>Slice</th>
<th>LUT as Logic</th>
<th>DSP slices</th>
<th>Dynamic Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ahb_soc</td>
<td>3,502</td>
<td>2,297</td>
<td>1,245</td>
<td>3,454</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>ar32z (ar32z_ahb_top)</td>
<td>1,726</td>
<td>1,005</td>
<td>592</td>
<td>1,678</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>core_inst (core)</td>
<td>1,464</td>
<td>639</td>
<td>478</td>
<td>1,416</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
AR32Z vs MicroBlaze in FPGA

FPGA chip: Xilinx Artix-7 100T (speed grade -1)
FPGA Board: Nexys A7
Operating Clock Frequency: 100MHz

<table>
<thead>
<tr>
<th></th>
<th>AR32Z</th>
<th>MicroBlaze*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT count</td>
<td>1,464</td>
<td>1,550</td>
</tr>
<tr>
<td>Dynamic Power</td>
<td>7 mW</td>
<td>31 mW</td>
</tr>
<tr>
<td>Total DMIPS</td>
<td>110</td>
<td>90</td>
</tr>
<tr>
<td>DMIPS/MHz</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Board Current Consumption</td>
<td>187 mA</td>
<td>209 mA</td>
</tr>
</tbody>
</table>

MicroBlaze Processor is generated for equivalent Microcontroller configuration.

- 77% less dynamic power than MicroBlaze
AR32Z ASIC Implementation Results

Used Configuration of AR32Z: RV32IM (Single-Cycle mult.) + Dynamic Branch Prediction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Node</td>
<td>TSMC 40nm LP</td>
</tr>
<tr>
<td>Std Library</td>
<td>Dolphin Tech. 6-track</td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>350 MHz</td>
</tr>
<tr>
<td>Macro Dimension</td>
<td>121.8 um x 151.9 um</td>
</tr>
<tr>
<td>Std. Cells / Flipflops</td>
<td>11,369 / 1,685</td>
</tr>
<tr>
<td>Std. Cell utilization</td>
<td>82%</td>
</tr>
</tbody>
</table>

Power Consumption:

<table>
<thead>
<tr>
<th>Leakage</th>
<th>Total Dynamic Power</th>
<th>Dynamic (uW/MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.953 mW</td>
<td>2.408 mW</td>
<td>6.879 uW/MHz</td>
</tr>
</tbody>
</table>

Wire Length Statistics (mm):

<table>
<thead>
<tr>
<th>Layer</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.0544</td>
</tr>
<tr>
<td>M2</td>
<td>12.08</td>
</tr>
<tr>
<td>M3</td>
<td>42.05</td>
</tr>
<tr>
<td>M4</td>
<td>44.70</td>
</tr>
<tr>
<td>M5</td>
<td>49.39</td>
</tr>
<tr>
<td>M6</td>
<td>51.78</td>
</tr>
</tbody>
</table>
AR32Z feature as AI Accelerator

- Accelerator will be tightly coupled to the processor providing low latency interface.
- Accelerators can come from ASA or 3rd party developers.
- Accelerators can range from DSP to AI inferencing such as image processing, audio processing, DSP and many more.
ARSIM (C/C++ Based SoC simulation)

- **C/C++ Model Library**: Most of the required IPs for IoT/Edge SoC is part of this library including ASA RISC-V processor
- **RTL to C/C++ Conversion Engine**: ARSIM conversion engine can be used to convert the customer RTL into ARSIM C/C++ model for ARSIM verification
- **Verification Engine**: customer specific SoC can be dynamically built to create SoC for specific application using the IPs and bus fabrics as part of the ARSIM verification environment. Once the SoC is built, ARSIM enables customers to load the application C/C++ programs into the ARSIM to run the application specific programs to run the verification and analysis of the SoC system
- **RISC-V processor from other vendors can also be used**

Reduces design verification and design TAT by as much as 30%
ASA Processor / Products Road Map

2020-2023
Next exciting 3 Years for AI

2020
- Q1: AR32Z Low Power processor
- Q2: Super-scalar processor
- Q3: AR128V Vector Processor for AI inferencing
- Q4: AR32E Application Processor running Linux

2021
- Q1: 4 Processor Cluster Quad-core Solutions
- Q2: AR128V Vector Processor for AI inferencing
- Q3: Chiplet based Multicore AI inferencing at Chiplet based Multi-core Solution
- Q4: XENON FPGA Based SoC Products

2022
- Q1: Vision Processor Embedded Vision for Image Processing
- Q2: AR32/64AP Application Processor running Linux
- Q3: Chiplet based Multicore AI inferencing at Chiplet based Multi-core Solution
- Q4: XENON FPGA Based SoC Products

2023
ASA Edge AI Solutions

- Tightly coupled with ASA Processor
- Low latency
- Low Power
- Complete FPGA solutions available

Custom Accelerator

- General Purpose accelerator for all AI/ML applications
- Low Power
- Highly software configurable
- FPGA/ASIC Solution

Vector Processor

- Heterogeneous low power chiplet based system design
- Highly configurable
- Rapid time-to-market
- Suitable for multiple AI/ML applications including 5G

Multi-Core
ASA RISC-V evaluation board

- FPGA evaluation board, Xenon will enable engineers and students to evaluate and develop their own programs
- It will support FreeRTOS
- Initial release will be single core
- Next releases will contain -
 - multiple processors (up to 4 cores)
 - AI accelerators
ASA Engagement Objectives

● Seeking Strategic Partners to Accelerate ASA Business Success

● Key Elements of Partnership:
 ○ Product Development:
 ■ Foundry support
 ■ Packaging with emphasis on Chiplet technology
 ■ Accelerator developers
 ■ Development tools and RTOS
Thank You