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Our Speakers

Raymond Tang
Director, Verification, Esperanto Technologies

• Formerly with Intel via Soft Machines
• SUN/Oracle
• Fujitsu, NEC

Shankar Jayaratnam
Senior Tech Lead, Esperanto Technologies

• Formerly with Intel
• Next-Gen big core pathfinding
• Many-core architecture (Knights family)
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Esperanto’s ET-SoC-1 Supercomputer on Chip

❖ Over 1,000 RISC-V cores, a mix of two types
� ET-Maxion™ for Linux and application software
� ET-Minion™ for machine-learning computation

❖ Cores and cache blocks are organized into a multi-level 
hierarchy using a mesh-style network on chip (NoC)

❖ Blocks connected to the NoC are called Shires
� The ET-Minion Shire is our basic block of compute cores
� Other Shires include Maxion cores, DRAM controllers, PCI 

Express controllers, a service processor, and so on
❖ The chip is built in TSMC’s 7nm process
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Challenges to ET-SoC-1 Verification

❖ As a new company, every aspect of the project was new to us
� Cores, caches, interconnect, process, toolchain etc.

❖ The scale of the design was exceptionally large
❖ Architecture/hardware/software codesign saved time but made 

specifications a moving target

❖ We saw that verification was going to be a great challenge
❖ We invested heavily in our verification team and tools

� With early adoption of Synopsys ZeBu® Emulation
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Design and Verification Platforms
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Our Experience With Three-Platform Verification

❖ Substantial verification IP reuse and minimal porting effort for 
checkers, assertions, coverage objects, stimulus and random 
generators

❖ Weekly VCS coverage-based profiling and 24/7 ZeBu operation 
drove rapid improvements in DV coverage

❖ Verification components and Bus functional models (BFM) helped 
maintain high throughput

❖ Architectural state checker worked with both VCS and ZeBu without 
compromising speed

❖ DV environments could run real software without modification
� Ensured our SW and HW teams moved forward together



November 6, 2020                                                                                                             RISC-V Days Tokyo 2020 8

Co-Development Flow

RTL

(Design

team)

Arch 

Model

(Arch 

Team)

SW 

Stack

(SW 

Team)

Test 

Suite

(DV

team)

Linux

Glow Compiler

Benchmarks

Perf Models

Power Models

SW Validation

Custom Firmware

Bring Up Tests

Random Generators

µ-Kernels

OS Snippets

Unified Power Format

Synopsys VC LP™

VCS

ZeBu

ZeBu
APIContinuous

Improvement

Reuse
Virtual 

Platform



November 6, 2020                                                                                                             RISC-V Days Tokyo 2020 9

Test Environment Execution
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ZeBu Scalability

❖ Initially we used one ZeBu Server 4 (ZS4) to perform testing across 
pairs of Shires with stub models for memory and I/O

❖ Once we had confidence in Shire-to-Shire communication over the 
NoC, we began adding more Shires and RTL IP blocks
� DRAM and PCIe controllers (both also from Synopsys)
� On-die Service Processor (an independent ET-Minion core that 

manages boot and runtime service)
� UltraSoC debug interfaces

❖ We scaled smoothly up to 8 ZS4s to emulate the full chip from RTL 
at MHz-level speed

❖ Cloud based executor to dispatch multiple jobs parallely
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Finding and Fixing Bugs

Architecture 
Frozen

Full SW Stack
Running on ZeBu

End to End
ML Benchmarks
Running on ZeBu

❖ Typical long-tail process
❖ Early use of ZeBu platform 

helped find bugs sooner 
❖ Early clean RTL provided 

stability for SW development

OS Boot
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Test Cycle Count by Type and Platform

75% of bugs found at Shire level or below. 20% found with inter-Shire tests. 5% found at SoC level.

Relative number
of bugs found
by type of test
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Benefits of Our Methodology

❖ Easy scaling from unit-level testing to full-chip testing

❖ Power analysis and performance validation guided improvements

in both architecture and RTL

❖ ZeBu allowed our software team to achieve an amazing 31x 

speedup on benchmarks in one year—without silicon!

� Starting with functional reference code and implementing a pre-
planned sequence of optimizations that delivered the predicted results 

on a predictable schedule

❖ We released Dromajo, our RISC-V RV64GC emulator for RTL co-

simulation, as an open-source project through Chips Alliance
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Dromajo, a new RISC-V RV64GC Emulator for RTL co-simulation

› Esperanto Technologies emulator for co-simulation
› Emulator based on F. Bellard’s RISCVEMU, bug fixed and enhanced with ISA 

2.3/priv 1.11
› Single core co-simulation with support for exceptions and MMIO
› Reasonably fast:  ~17 MIPS on a 3GHz Intel Xeon Platinum 8124M
› Apache license
› https://github.com/chipsalliance/dromajo

› Capacity to create and resume checkpoints reusable across different cores
› Work-in-Progress

› Integrate with external cores: BOOM,  Ariane, black-parrot, …
› Efficient SPEC2017 checkpoints

1
4

about:blank
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Conclusions

❖ Esperanto used parallel architectural modelling, simulation, and 
FPGA emulation to design and debug the ET-SoC-1

❖ This methodology helped find RTL bugs early in the design 
process, speeding bug fixes and software development

❖ Full-chip emulation enabled rapid and dramatic software 
performance gains before tape-out

❖ Well-integrated Synopsys IP, VCS simulation, and ZeBu 
emulation gives high confidence in production-ready first silicon
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Q&A


