
November 6, 2020 RISC-V Days Tokyo 2020 1

Esperanto’s Verification Methodology for a
RISC-V Machine Learning SoC

Raymond Tang & Shankar Jayaratnam

RISC-V Days Tokyo

November 6, 2020

November 6, 2020 RISC-V Days Tokyo 2020 2

Topics

❖ Our Speakers
❖ Esperanto’s ET-SoC-1 Supercomputer on Chip
❖ Challenges to Verification
❖ Our Methodology
❖ Results
❖ Conclusions
❖ Q&A

November 6, 2020 RISC-V Days Tokyo 2020 3

Our Speakers

Raymond Tang
Director, Verification, Esperanto Technologies

• Formerly with Intel via Soft Machines
• SUN/Oracle
• Fujitsu, NEC

Shankar Jayaratnam
Senior Tech Lead, Esperanto Technologies

• Formerly with Intel
• Next-Gen big core pathfinding
• Many-core architecture (Knights family)

November 6, 2020 RISC-V Days Tokyo 2020 4

Esperanto’s ET-SoC-1 Supercomputer on Chip

❖ Over 1,000 RISC-V cores, a mix of two types
� ET-Maxion™ for Linux and application software
� ET-Minion™ for machine-learning computation

❖ Cores and cache blocks are organized into a multi-level
hierarchy using a mesh-style network on chip (NoC)

❖ Blocks connected to the NoC are called Shires
� The ET-Minion Shire is our basic block of compute cores
� Other Shires include Maxion cores, DRAM controllers, PCI

Express controllers, a service processor, and so on
❖ The chip is built in TSMC’s 7nm process

November 6, 2020 RISC-V Days Tokyo 2020 5

Challenges to ET-SoC-1 Verification

❖ As a new company, every aspect of the project was new to us
� Cores, caches, interconnect, process, toolchain etc.

❖ The scale of the design was exceptionally large
❖ Architecture/hardware/software codesign saved time but made

specifications a moving target

❖ We saw that verification was going to be a great challenge
❖ We invested heavily in our verification team and tools

� With early adoption of Synopsys ZeBu® Emulation

November 6, 2020 RISC-V Days Tokyo 2020 6

Design and Verification Platforms

Architectural model for
rapid exploration of

design space and early
software bring-up

Fully configurable to run fast
simulation for unit and

interface tests to find most
RTL bugs

ISA-Level
Core Models

Synopsys ZeBu® Emulation

Minimal IO Models

Synopsys VCS® Simulation C++ Virtual Platform

RTL Core
Models

C++ I/O
Models

RTL Cache
Models

RTL DRAM
Controller

RTL NoC

RTL Core
Models

RTL I/O
Models

RTL Cache
Models

RTL DRAM
Controller

RTL NoC

FPGA-based emulation for
multi-core and whole-chip

testing to find scale-out
issues and tune SW perf

November 6, 2020 RISC-V Days Tokyo 2020 7

Our Experience With Three-Platform Verification

❖ Substantial verification IP reuse and minimal porting effort for
checkers, assertions, coverage objects, stimulus and random
generators

❖ Weekly VCS coverage-based profiling and 24/7 ZeBu operation
drove rapid improvements in DV coverage

❖ Verification components and Bus functional models (BFM) helped
maintain high throughput

❖ Architectural state checker worked with both VCS and ZeBu without
compromising speed

❖ DV environments could run real software without modification
� Ensured our SW and HW teams moved forward together

November 6, 2020 RISC-V Days Tokyo 2020 8

Co-Development Flow

RTL

(Design

team)

Arch

Model

(Arch

Team)

SW

Stack

(SW

Team)

Test

Suite

(DV

team)

Linux

Glow Compiler

Benchmarks

Perf Models

Power Models

SW Validation

Custom Firmware

Bring Up Tests

Random Generators

µ-Kernels

OS Snippets

Unified Power Format

Synopsys VC LP™

VCS

ZeBu

ZeBu
APIContinuous

Improvement

Reuse
Virtual

Platform

November 6, 2020 RISC-V Days Tokyo 2020 9

Test Environment Execution

Feature BringUp

TE

Feature BringUp

TE Un$

TE

TE

TE

ET-Minion

Tensor Unit

Multi-Core

Cache Topology

ET-Minion Shire

Memory Controller

NoC skeleton

TEI/O and ET-Maxion Shire

Partial SoC VCS sim+ZeBu emulation

TEFull SoC ZeBu Emulation

TE

Feature BringUp

Comprehensive

Feature BringUp Comprehensive

BringUp

BringUp

Shires Integration

BringUp

BringUp

OS & Benchmark Full System Level Debug

Partial System Level Debug

Comprehensive

Comprehensive

30%-40% 40%-70% 70%-95% 95%-98%Coverage

Ta
pe

-O
ut

Unit
Level

Feature BringUpET-Maxion

= Integration Point

TE

BringUp

Comprehensive

TE = Test Environment Development
= Continue until Tape-Out

SoC
Level

Shire
Level

November 6, 2020 RISC-V Days Tokyo 2020 10

ZeBu Scalability

❖ Initially we used one ZeBu Server 4 (ZS4) to perform testing across
pairs of Shires with stub models for memory and I/O

❖ Once we had confidence in Shire-to-Shire communication over the
NoC, we began adding more Shires and RTL IP blocks
� DRAM and PCIe controllers (both also from Synopsys)
� On-die Service Processor (an independent ET-Minion core that

manages boot and runtime service)
� UltraSoC debug interfaces

❖ We scaled smoothly up to 8 ZS4s to emulate the full chip from RTL
at MHz-level speed

❖ Cloud based executor to dispatch multiple jobs parallely

November 6, 2020 RISC-V Days Tokyo 2020 11

Finding and Fixing Bugs

Architecture
Frozen

Full SW Stack
Running on ZeBu

End to End
ML Benchmarks
Running on ZeBu

❖ Typical long-tail process
❖ Early use of ZeBu platform

helped find bugs sooner
❖ Early clean RTL provided

stability for SW development

OS Boot

November 6, 2020 RISC-V Days Tokyo 2020 12

Test Cycle Count by Type and Platform

75% of bugs found at Shire level or below. 20% found with inter-Shire tests. 5% found at SoC level.

Relative number
of bugs found
by type of test

November 6, 2020 RISC-V Days Tokyo 2020 13

Benefits of Our Methodology

❖ Easy scaling from unit-level testing to full-chip testing

❖ Power analysis and performance validation guided improvements

in both architecture and RTL

❖ ZeBu allowed our software team to achieve an amazing 31x

speedup on benchmarks in one year—without silicon!

� Starting with functional reference code and implementing a pre-
planned sequence of optimizations that delivered the predicted results

on a predictable schedule

❖ We released Dromajo, our RISC-V RV64GC emulator for RTL co-

simulation, as an open-source project through Chips Alliance

November 6, 2020 RISC-V Days Tokyo 2020 14

Dromajo, a new RISC-V RV64GC Emulator for RTL co-simulation

› Esperanto Technologies emulator for co-simulation
› Emulator based on F. Bellard’s RISCVEMU, bug fixed and enhanced with ISA

2.3/priv 1.11
› Single core co-simulation with support for exceptions and MMIO
› Reasonably fast: ~17 MIPS on a 3GHz Intel Xeon Platinum 8124M
› Apache license
› https://github.com/chipsalliance/dromajo

› Capacity to create and resume checkpoints reusable across different cores
› Work-in-Progress

› Integrate with external cores: BOOM, Ariane, black-parrot, …
› Efficient SPEC2017 checkpoints

1
4

about:blank

November 6, 2020 RISC-V Days Tokyo 2020 15

Conclusions

❖ Esperanto used parallel architectural modelling, simulation, and
FPGA emulation to design and debug the ET-SoC-1

❖ This methodology helped find RTL bugs early in the design
process, speeding bug fixes and software development

❖ Full-chip emulation enabled rapid and dramatic software
performance gains before tape-out

❖ Well-integrated Synopsys IP, VCS simulation, and ZeBu
emulation gives high confidence in production-ready first silicon

November 6, 2020 RISC-V Days Tokyo 2020 16

Q&A

