Digital Design in Chisel

Martin Schoeberl
mailto:masca@dtu.dk

Technical University of Denmark

September 18, 2020

1/44

mailto:masca@dtu.dk

Motivating Example:
Lipsi: Probably the Smallest Processor in the World

» Tiny processor
» Simple instruction set
» Shall be small
> Around 200 logic cells, one FPGA memory block
» Hardware described in Chisel
> Available at https://github.com/schoeberl/lipsi
> Usage

» Utility processor for small stuff
» In teaching for introduction to computer architecture

» The design took place on the island Lipsi

2/44

https://github.com/schoeberl/lipsi

The Design of Lipsi on Lipsi

Lipsiz 2 Winimalsbie Hicroconboalies sl

D 5;’1«;3(@' O‘“‘C"ﬂf ”‘"""’V\/ 2> 25\/((?5/([’1}(";&!\5\

Lm,;‘ Lipse

oy Rizoole:! (U rey indivek /s Seyet=e)
:” o &bt dafapath Fbit varisile lagth instrackions
. b Acey + BUIE) Fegither iy memory
b 25¢ byfc imsbuactiony 15l byte dat s
Dfapate 1 /
2o

hen on

3/44

Lipsi Implementation

A\

Hardware described in Chisel

Tester in Chisel
Assembler in Scala
» Core case statement about 20 lines
Reference design of Lipsi as software simulator in Scala
Testing:
> Self testing assembler programs
» Comparing hardware with a software simulator

All in a single programming language!
All in a single program
How much work is this?

4/44

Chisel is Productive

vVvyvyVvVvyyy

v

All coded and tested in less than 14 hours!

The hardware in Chisel

Assembler in Scala

Some assembler programs (blinking LED)
Simulation in Scala

Two testers

BUT, this does not include the design (done on paper)

5/44

More on Chisel Success Stories

vvvyVvVvyyypy

vvyyy

Some weeks ago CCC 2020 (in silicon valley)

90 participants

More than 30 different (hardware) companies present
Several companies are looking into Chisel

IBM did an open-source PowerPC
SiFive is a RISC-V startup success
» High productivity with Chisel
> Open-source Rocket chip

Esperanto uses the BOOM processor in Chisel
Google did a machine learning processor
Intel is looking at Chisel

Chisel is open-source, if there is a bug you can fix it
» You can contribute to the Chisel ecosystem

6/44

https://www.sifive.com/

Chisel

» A hardware construction language
» Constructing Hardware In a Scala Embedded Language
> If it compiles, it is synthesysable hardware
» Say goodby to your unintended latches

» Chisel is not a high-level synthesis language

» Single source two targets

» Cycle accurate simulation (testing)
» Verilog for synthesis

» Embedded in Scala

» Full power of Scala available
» But to start with, no Scala knowledge needed

» Developed at UC Berkeley

7/44

The C Language Family

Verilog C++ Java C#

SystemVerilog SystemC Scala

|
Chisel

8/44

Other Language Families

Algol
\ Python
Ada \
\ MyHDL
VHDL

9/44

Some Notes on Scala

v

Object oriented
Functional
Strongly typed
» With very good type inference

vy

v

Could be seen as Java++

Compiled to the JVM
» Good Java interoperability
» Many libraries available

v

10/44

Chisel vs. Scala

» A Chisel hardware description is a Scala program

» Chisel is a Scala library

» When the program is executed it generates hardware

» Chisel is a so-called embedded domain-specific language

11/44

A Small Language

» Chisel is a small language

» On purpose

» Not many constructs to remember

» The Chisel Cheatsheet fits on two pages

» The power comes with Scala for circuit generators
» With Scala, Chisel can grow with you

12/44

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf

Tool Flow for Chisel

[S—
Hello.scala w

scalac

Verilog
Emitter
JVM

good/bad
GTKWave Circuit
Synthesis

13/44

Expressions are Combinational Circuits

(a | b) & "(c ™ d)

val addval = a + b
val orvVal = a | b
val boolVal = a >= b

» The usual operations

» Simple name assignment with val
» Width inference

» Type inference

» Types: Bits, Ulnt, Sint, Bool

14/44

Conditional Updates for Combinational Circuits

val w = Wire(UInt())

when (cond) {

w := 1.0

} .elsewhen (cond2) {
w := 2.0

} .otherwise {
w := 3.0

}

» Similar to VHDL process or SystemVerilog always_comb
» Chisel checks for complete assignments in all branches
» Latches give compile error

15/44

Registers

val cntReg = RegInit(0.U(32.W))

cntReg := cntReg + 1.0

» Type inferred by initial value (= reset value)
» No need to specify a clock or reset signal

» Also definition with an input signal connected:

val r = RegNext(nextVal)

16/44

Functional Abstraction

def addSub(add: Bool, a: UInt, b: Ulnt)
Mux (add, a+b, a-b)

val res = addSub(cond, a, b)

def rising(d: Bool) = d && !RegNext(d)

» Functions for repeated pieces of logic
» May contain state

» Functions may return hardware

17/44

Bundles

class DecodeExecute extends Bundle {
val rsl = UInt(32.W)
val rs2 = UInt(32.W)
val immVal = UInt(32.W)
val aluOp = new AluOp()

» Collection of values in named fields
» Like struct or record

18/44

Vectors

val myVec = Vec(3, SInt(10.W))

myVec(0) := -3.S
val y = myVec(2)

> Indexable vector of elements
» Bundles and Vecs can be arbitrarely nested

19/44

IO Ports

class
val
val
val

Channel extends Bundle {
data = Input(UInt(8.W))
ready = Output(Bool())
valid = Input(Bool())

» Ports are Bundles with directions

» Direction can also be assigned at instantiation:

class
val
val

ExecuteIO extends Bundle {
dec = Input(new DecodeExecute())
mem = Output(new ExecuteMemory())

20/44

Hello World in Chisel

class Hello extends Module {
val io = IO(new Bundle {
val led = Output (UInt(1l.W))
b
val CNT_MAX = (50000000 / 2 - 1).U;

val cntReg RegInit (0.U(32.W))
val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.0
when(cntReg === CNT_MAX) {
cntReg := 0.U
blkReg := "blkReg
}
io.led := blkReg

21/44

Connections

» Simple connections just with assignments, e.g.,

adder.io.a := ina
adder.io.b := inb

» Automatic bulk connections between components

dec.io <> exe.io
mem.io <> exe.io

22/44

Chisel has a Multiplexer

[es --

4_ .

—a—»

y —»
— b —»

val result = Mux(sel, a, b)

> So what?

» Wait... What type is a and b?
» Can be any Chisel type!

23/44

Chisel has a Generic Multiplexer

. |es --

— a —»
y —»
— b —»

val result = Mux(sel, a, b)
» SW people may not be impressed

» They have generics since Java 1.5 in 2004
> List<Flowers> != List<Cars>

24/44

Generics in Hardware Construction

» Chisel supports generic classes with type parameters
» Write hardware generators independent of concrete type
» This is a multiplexer generator

def myMux[T <: Data](sel: Bool, tPath: T, fPath:

T): T = {

val ret = WireDefault (fPath)
when (sel) {

ret := tPath
}

ret

25/44

Put Generics Into Use

> Let us implement a generic FIFO
» Use the generic ready/valid interface from Chisel

class DecoupledIO[T <: Data](gen: T) extends
Bundle {
val ready
val valid
val bits

}

Input (Bool())
Output (Bool (D)
Output (gen)

26/44

Define the FIFO Interface

class FifoIO[T <: Data](private val gen: T)
extends Bundle {
val enqg = Flipped(new DecoupledIO(gen))
val deq = new DecoupledIO(gen)
}

> We need enqueueing and dequeueing ports
» Note the Flipped

» [t switches the direction of ports
» No more double definitions of an interface

27/44

But What FIFO Implementation?

v

Bubble FIFO (good for low data rate)

Double buffer FIFO (fast restart)

FIFO with memory and pointers (for larger buffers)
» Using flip-flops
» Using on-chip memory

» And some more...

vy

v

This calls for object-oriented programming hardware
construction

28/44

Abstract Base Class and Concrete Extension

abstract class Fifo[T <: Data](gen: T, depth: Int)
extends Module {
val io = IO(new FifoIO(gen))

assert(depth > 0, "Number of buffer elements
needs to be larger than 0")

» May contain common code
» Extend by concrete classes

class BubbleFifo[T <: Data](gen: T, depth: Int)
extends Fifo(gen: T, depth: Int) {

29/44

Select a Concrete FIFO Implementation

» Decide at hardware generation
» Can use all Scala/Java power for the decision

» Connect to a web service, get Geegle Alphabet stock price,
and decide on which to use ;-)

» For sure a silly idea, but you see what is possible...

» Developers may find clever use of the Scala/Java power

» We could present a GUI to the user to select from

» We use XML files parsed at hardware generation time
» End of TCL, Python,... generated hardware

30/44

Binary to BCD Conversion for VHDL

31/44

Java Program

» Generates a VHDL table
» The core code is:

for (int i = 0; i < Math.pow(2, ADDRBITS); ++i) {
int val = ((i/10)<<4) + 1i%10;
// write out VHDL code for each line

» With all boilerplate 118 LoC

32/44

Chisel Version of Binary to BCD Conversion

val table = Wire(Vec (100, UInt(8.W)))
for (i <- ® until 100) {
table(i) := (((i/10)<<4) + 1%10).U

}
val bcd = table(bin)

» Directly generates the hardware table as a Vec
» At hardware construction time
> In the same language

33/44

Free Tools for Chisel and FPGA Design

vVvvyVvVvYVvyyvyy

Java OpendDK 8

sbt, the Scala (and Java) build tool
Intellid (the free Community version)
GTKWave

Vivado WebPACK or

Quartus
Nice to have:
> make, git

34/44

https://adoptopenjdk.net/
https://www.scala-sbt.org/
https://www.jetbrains.com/idea/download/
http://gtkwave.sourceforge.net/
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

Chisel in the T-CREST Project

» Patmos processor rewritten in Chisel

> As part of learning Chisel

»> 6.4.2013: Chisel: 996 LoC vs VHDL: 3020 LoC

» But VHDL was very verbose, with records maybe 2000 LoC
» Memory controller, memory arbiters, 10 devices in Chisel
» Several Phd, master, and bachelor projects:

» Patmos stack cache

» Method cache for Patmos

» TDM based memory arbiter

» RISC stack cache

» and some more

35/44

Chisel in Teaching

vVvyvyVvVvyy

v

Using/offering it in Advanced Computer Architecture
Spring 2016—2018 all projects have been in Chisel
Several Bachelor and Master projects

Students pick it up reasonable fast

For software engineering students easier than VHDL

Switched Digital Electronics 2 at DTU to Chisel (spring
semester 2020)

Issue of writing a program instead of describing hardware
remains

36/44

Chisel in Digital Electronic 2

» Basic RTL level digital design wit Chisel
» Chisel testers for debugging

» Very FPGA centric course

» Final project is a vending machine

>
>

All material (slides, book, lab material) in open source
Tried to coordinate with introduction to programming (Java)

»> But sometimes | was ahead with Chisel constructs (e.g.,
classes)

37/44

Teaching Feedback

» General positive feedback of the course
» Most students liked Chisel
» They also liked the (free) Chisel book
» Better link to Java programming (same JVM)
» Similar setup (IDE)
» Lab finish about the same time as last year with VHDL

»> So Chisel is not more productive than VHDL?
» But we had the Corona lockdown

38/44

A Chisel Book

Digital Design
with Chisel

Martin Schoeberl

» Available in open access (PDF)
» In paper from Amazon
» see http://www.imm.dtu.dk/~masca/chisel-book.html

39/44

http://www.imm.dtu.dk/~masca/chisel-book.html

What May Happen with an Open-Source Book

Digital Design
with Chisel

{8 Chisel i HEFRE

Martin Schoeberl

> A free Chinese translation

40744

Some Weeks ago | got This

Chisel{fi> 7T 4 I - TH
1
B R(HAGELR)

IT—FV - —RNIE
Chiselfli& &R

> A Japanese translation

41/44

Further Information

vVvvyVvVvVvVvyyypy

https://www.chisel-1lang.org/
http://www.imm.dtu.dk/~masca/chisel-book.html
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-1lab

42744

https://www.chisel-lang.org/
http://www.imm.dtu.dk/~masca/chisel-book.html
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-lab

Summary

v

vVvyvyVvVvyy

Processors do not get much faster — we need to design
custom hardware

We need a modern language for hardware/systems design
Chisel is a small language

Embedding it in Scala gives the power

We can write circuit generators

We can do co-simulation

| can provide further introduction into Chisel including labs

43/44

